If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x-92=0
a = 4; b = 4; c = -92;
Δ = b2-4ac
Δ = 42-4·4·(-92)
Δ = 1488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1488}=\sqrt{16*93}=\sqrt{16}*\sqrt{93}=4\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{93}}{2*4}=\frac{-4-4\sqrt{93}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{93}}{2*4}=\frac{-4+4\sqrt{93}}{8} $
| t+1/2=1/3 | | 4x-60=x+60=1.5x | | 5-6(x-1)=11+4x | | 21x+4-6x=9 | | 2x+1+x+5=x=x+7+x | | 3a+0.6=2a+4.6 | | u=369u-6 | | A=5.6x39.2 | | 2x+1+x+7=x+7+x | | x+60=1.5x | | 90+2x-1=180 | | 3x+228=x+64 | | 1.5x=4x-60=x+60 | | 21x+15=17x+35 | | 5^6x-3=625 | | 1.5x=(4x-60)=x+60 | | 15.47+0.11x=15.97-0.09x | | (4x+3)^2=8x(4x+1) | | 6x^2-4x-28=-10+5x | | 3x4=7x+3 | | -6(-6+8n)=180 | | 11x+23=7x-23 | | 7x-23=11x+23 | | 3z^2+4z=-1 | | x=2/5x+1/3x+120 | | 1=6(24)+b | | 6(y+3)=3y+18 | | 27-3x=20+4x | | 4x-60=1.5x | | 9x-7=10x-1 | | w/5=-50 | | 0=16t^2+322 |